Many Americans Have Prediabetes and Should Be Considered for Metformin Therapy

Mary K. Rhee, MD1, Kirsten Herrick, MSc2, David C. Ziemer, MD1, Viola Vaccarino, MD, PhD3, William S. Weintraub, MD1, K.M. Venkat Narayan, MD5,6, Paul Kolm, PhD4, Jennifer G. Twombly, MD, PhD1, Lawrence S. Phillips, MD1,2

1Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA, 2Nutrition and Health Sciences Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 3Department of Medicine, Division of Cardiology, Emory Program in Cardiovascular Outcomes Research and Epidemiology (EPICORE), Atlanta, GA, 4Christiana Care Health System, Newark, DE, 5Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 6Department of Medicine, Emory University School of Medicine, Atlanta, GA, 7Atlanta VA Medical Center, Decatur, GA

Corresponding author and address for reprint requests:
Mary K. Rhee, MD, MS
Email: mrhee@emory.edu

Submitted 3 March and accepted September 21 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To determine the proportion of the American population who would merit metformin treatment, according to recent ADA consensus panel recommendations, to prevent or delay the development of diabetes.

Research Design and Methods: Risk factors were evaluated in 1581 SIGT, 2014 NHANES III, and 1111 NHANES 2005-2006 subjects, who were non-Hispanic white and black, without known diabetes. Criteria for consideration of metformin included the presence of both IFG and IGT, with ≥1 additional diabetes risk factor: age <60 years, BMI ≥35 kg/m², family history of diabetes, elevated triglycerides, reduced HDL-cholesterol, hypertension, or A1c >6.0%.

Results: Isolated IFG, isolated IGT, and IFG+IGT were found in 18.0%, 7.2%, and 8.2% of SIGT, 22.3%, 6.4%, and 9.4% of NHANES III, and 21.8%, 5.0%, and 9.0% of NHANES 2005-2006 subjects, respectively. In SIGT, NHANES III, and NHANES 2005-2006, criteria for metformin consideration were met in 99%, 96%, and 96% with IFG+IGT, 31%, 29%, 28% of all IFG, and 53%, 57%, and 62% of all IGT – 8.1%, 9.1%, and 8.7% of all subjects, respectively.

Conclusions: Over 96% of individuals with both IFG and IGT are likely to meet ADA consensus criteria for consideration of metformin. Since over 28% of all of those with IFG met criteria, providers should perform OGTTs to find concomitant IGT in all patients with IFG. To the extent that our findings are representative of the U.S. population, approximately 1 in 12 adults has a combination of prediabetes and risk factors which may justify consideration of metformin treatment for diabetes prevention.
Diabetes is a public health epidemic (1) associated with high morbidity, mortality (1) and cost (2). Currently, an estimated 38 million Americans have the disease, of whom nearly 40% are undiagnosed, and another 87 million have prediabetes – impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) (3). Diabetes develops insidiously over several years, during which time glucose metabolism progresses slowly from normal to prediabetes and then more rapidly to diabetes. Based on observational and prospective studies, approximately 25-40% of individuals with prediabetes go on to develop diabetes over 3-8 years (4-6), and there is evidence of complications in 50% of patients at the time of diagnosis of diabetes (7).

Since progression from prediabetes can be prevented or delayed by lifestyle change and/or medication (4-6), the American Diabetes Association (ADA) has issued a consensus statement recommending early identification and preventive treatment in high-risk individuals (8). The panel statement recommends that individuals with both IFG and IGT and one additional diabetes risk factor: age <60 years, BMI ≥35 kg/m², family history of diabetes, elevated triglycerides, reduced HDL-cholesterol, or A1c >6.0% should be considered for treatment with metformin, in addition to lifestyle modification, which includes weight loss and physical activity.

In order to determine what proportion of the American population presenting with either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) would merit consideration for metformin treatment in accordance with the recent ADA recommendations, we evaluated healthy volunteers without known diabetes who were screened for diabetes/prediabetes by the 75-g oral glucose tolerance test (OGTT).

RESEARCH DESIGN AND METHODS

Subjects and study design. In cross-sectional analyses, we evaluated the likelihood that Americans with previously unrecognized prediabetes would meet ADA Consensus Panel recommendations for consideration of metformin in addition to change in lifestyle. Criteria for consideration of metformin included the presence of both impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), with ≥1 additional diabetes risk factor: age <60 years, BMI ≥35 kg/m², family history of diabetes, elevated triglycerides, reduced HDL-cholesterol, hypertension, or A1c >6.0%.

Between 1/1/2005 and 3/31/2008 subjects were recruited to participate in the “Screening for Impaired Glucose Tolerance” study (SIGT) (9), a cross-sectional study which was approved by the Emory Institutional Review Board. Invitation to participate was extended to employees of the Grady Health System, Emory HealthCare, and Emory University and Morehouse Schools of Medicine, as well as members of the community. Criteria for eligibility were age 18 or above, non-Hispanic white or black race, no prior diagnosis of diabetes, not pregnant or breastfeeding, not taking glucocorticoids, and being well enough to have worked during the previous week (without requiring actual employment). During recruitment, 4,024 individuals expressed initial interest in the study, among whom 2,111 were scheduled for first visits (selected largely on the basis of need to balance participant sex and race), 1,658 completed first visits, and 1,581 completed the protocol. All study visits were performed in the General Clinical Research Centers at Emory University Hospital and Grady Memorial Hospital. All subjects gave written informed consent prior to study participation.

We also evaluated subjects who took
Metformin indicated in many prediabetic patients

part in the Third National Health and Nutrition Examination Survey (NHANES III) (10) and the continuous National Health and Nutrition Examination Survey 2005-2006 (NHANES 2005-2006) (11). NHANES is a program of studies conducted by the National Center for Health Statistics of the Centers for Disease which include both interviews and physical examinations in a nationally representative sample to assess the health and nutritional status of adults and children in the United States. NHANES III was conducted between 1988 and 1994. In 1999, the survey became a continuous program examining approximately 5,000 persons each year, which includes NHANES 2005-2006.

Measurements in the SIGT study population. Demographic information was collected by self-report, and included family history of diabetes in a first degree relative, race, history of hypertension, history of diabetes, and current medication use.

Height was measured with a stadiometer after shoes were removed. Weight was measured using digital scales with subjects in light clothing. Blood pressure was measured with digital manometers after subjects had been seated quietly for 5 minutes.

Classification of glucose tolerance was determined by a 75g oral glucose tolerance test (OGTT) in accordance to ADA diagnostic criteria (12): normal glucose tolerance (NGT) – fasting plasma glucose (FPG) <100 mg/dl and 2-hour postchallenge glucose (2hrPG) <140 mg/dl, isolated impaired fasting glucose – FPG 100-125 mg/dl and 2hrPG <140 mg/dl, isolated impaired glucose tolerance (IGT) – FPG <100 mg/dl and 2hrPG 140-199 mg/dl, any IFG – FPG 100-125 mg/dl and 2hrPG <199 mg/dl, any IGT – FPG <126 mg/dl and 2hrPG 140-199 mg/dl, combined IFG and IGT – FPG 100-125 mg/dl and 2hrPG 140-199 mg/dl, and diabetes – FPG ≥126 mg/dl or 2hrPG ≥200 mg/dl. Isolated IFG was further subcategorized into fasting glucose between 100 and 109 mg/dl (IFG 100-109) and fasting glucose between 110 and 125 mg/dl (IFG 110-125). All OGTTs were begun before 11 am following an overnight fast, with blood samples drawn at baseline, 1 hour, and 2 hours. Blood samples were also obtained for measurement of plasma lipids and hemoglobin A1c. Plasma glucose samples were obtained using sodium fluoride/oxalate preservative. Plasma samples were centrifuged, separated and frozen within 30 minutes. All samples were stored at -80° C until assayed. Chemical analyses were performed in the central clinical laboratory of the Grady Health System using the Beckman-Coulter LX-20 (Brea, CA); A1c measurement with this system is NGSP-certified.

Statistical analysis. In the NHANES III database, a subset of adults over the age of 40 years had an OGTT performed. We analyzed only those who had no known history of diabetes, had completed the OGTT in the morning before 11 AM, after an overnight fast of at least 9 hours, for which the 2-hour postchallenge glucose level was drawn between 100 and 135 minutes after ingesting the glucose load, and had a survey weight value greater than zero. Among this subset (n=2833), we included only those who were non-Hispanic black or white (to match our study population) (n=2057).

In the NHANES 2005-2006 population, all subjects 12 years and older who were seen in the morning session were asked to have an OGTT performed. Subjects were eligible for the OGTT if they had fasted overnight for at least 9 hours, reported no use of oral medications or insulin for diabetes, were not pregnant, did not have hemophilia, and did not receive cancer chemotherapy in the previous three weeks. All blood samples for the 2-hour glucose measurement were drawn between 100 and 135 minutes after ingesting the glucose load. For our analysis, we included only those who were 18 years
Metformin indicated in many prediabetic patients

and older, had no known history of diabetes, were non-Hispanic black or white (to match our study population), and had a survey weight value greater than zero (n=1154). Since some subjects had more than one blood pressure measurement, the average of the measurements was used for the analysis.

For the SIGT, NHANES III and NHANES 2005-2006 subjects, age, body mass index (BMI), and A1c were categorized using the cutoffs recommended by the ADA: age <60 years, BMI ≥35 kg/m², and A1c >6.0% (8). Other risk factors for diabetes which were not specifically defined by the ADA were categorized according to the AHA/NHLBI diagnostic criteria for metabolic syndrome (12): presence of hypertension by history, systolic blood pressure >130 mm Hg, or diastolic blood pressure >85 mm Hg; triglyceride level ≥150 mg/dl; and HDL-cholesterol <40 mg/dl in men and <50 mg/dl in women. Given the high number of subjects in NHANES III and NHANES 2005-2006 whose reporting of the diabetes status of one of more first degree relatives was either not known or left blank (NHANES III, n=1163; NHANES 2005-2006, n=116), relatives whose diabetes status was missing or not known were assumed to not have diabetes, a method that was also implemented for the analysis of the SIGT study group. In addition, subjects with missing values for the remaining risk factors were excluded from analysis (NHANES III: 1 missing blood pressure measurement or hypertension history, 7 missing A1c values, 27 missing triglyceride values, and 35 missing HDL-cholesterol values; NHANES 2005-2006: 32 missing blood pressure measurements or hypertension history, 8 missing BMI measurements, 2 missing A1c values, 4 missing triglyceride values, and 4 missing HDL values), leaving 2014 subjects in NHANES III and 1111 subjects in NHANES 2005-2006 to be analyzed for metformin consideration.

Means and frequencies were determined in aggregate and by subgroup analysis of the different glucose tolerance categories. All SIGT analyses were performed using SPSS 15.0 (SPSS Inc., Chicago, IL). All NHANES III and NHANES 2005-2006 analyses were conducted using SUDAAN statistical software package version 10 to account for the complex survey design and all estimates were weighted (RTI International, Research Triangle Park, NC, USA).

RESULTS

Among 1581 volunteers who completed OGTTs in the SIGT study, average age was 48 yrs and BMI 30.3 kg/m²; 42% were male, and 58% were black (Table 1). In the selected NHANES III population (n=2014), the average age was 55 yrs and BMI 27.3 kg/m²; 47% were male, and 10% were black, and in NHANES 2005-2006 (n=1111), the average age was 46 yrs and BMI 28.5 kg/m²; 49% were male, and 13% were black (Table 1).

In the SIGT population, 62.1% had normal fasting glucose and normal glucose tolerance (NGT), 18.0% had isolated IFG, 7.2% had isolated IGT, 8.2% had both IFG and IGT, and 4.6% had diabetes, similar to the proportions in NHANES III (54.3% NGT, 22.3% isolated IFG, 6.4% isolated IGT, 9.4% both IFG and IGT, 7.6% diabetes) and NHANES 2005-2006 (59.1% NGT, 21.8% isolated IFG, 5.0% isolated IGT, 9.0% both IFG and IGT, 5.2% diabetes). All three populations had a comparable portion with either IFG or IGT (33.4% in SIGT, 38.1% NHANES III, 35.8% in NHANES 2005-2006).

When considering the associated risk factors for diabetes, as specified by the ADA consensus statement (8), among those with both IFG and IGT, the presence of each risk factor was generally higher among SIGT subjects, compared to subjects in NHANES
Metformin indicated in many prediabetic patients

III and NHANES 2005-2006, with the exception of elevated triglycerides and A1c levels (Table 2). Even with the differences in the prevalence of risk factors, almost all subjects with both IFG and IGT in all three populations had at least one risk factor (99% in SIGT, 96% in NHANES III, 96% in NHANES 2005-2006), which was similar among those with IFG (isolated or with IGT: 99% in SIGT, 96% in NHANES III, 83% in NHANES 2005-2006) and those with IGT (isolated or with IFG: 99% in SIGT, 96% in NHANES III, 94% in NHANES 2005-2006). Among all subjects with IFG (isolated or with IGT), one-quarter to one-third (31% in SIGT, 29% in NHANES III, 28% in NHANES 2005-2006) met the recommended criteria for metformin treatment, and among all subjects with IGT (isolated or with IFG), one-half to two-thirds (53% in SIGT, 57% in NHANES III, 62% in NHANES 2005-2006) did so (see Figure 1). Overall, approximately 1 in 12 individuals in these populations met criteria for consideration of metformin (8.1% in SIGT, 9.1% in NHANES III, 8.7% in NHANES 2005-2006).

CONCLUSIONS

In consideration of the enormous public health impact of diabetes and the evidence of benefit from pharmacologic treatment for the prevention of diabetes, the American Diabetes Association (ADA) issued a consensus statement recommending preventive treatment in individuals at high risk of developing diabetes, defined as those with more severe prediabetes (both impaired fasting glucose and impaired glucose intolerance as well as an additional risk factor) (8). In order to determine the proportion of individuals who would be targeted by such a recommendation, we examined a relatively healthy population without previously diagnosed diabetes (SIGT), as well as representative samples of the U.S. population (NHANES III and NHANES 2005-2006), and found that one-quarter to one-third had prediabetes. Among all of those with IFG, nearly one-third of subjects met criteria for consideration of metformin treatment to prevent diabetes in accordance with the recent ADA consensus statement, over one-half of all of the IGT subjects qualified, and almost all of those with both IFG and IGT qualified. Overall, 8% to 9% met recommended criteria. Assuming that our data are generalizable to the U.S. population, approximately 24 million Americans might benefit from pharmacologic treatment in addition to lifestyle modification.

The epidemic of diabetes and the insidious onset of its complications have prompted a call for early identification and preventative treatment of the disease. Diabetes is currently the leading cause of blindness, end-stage renal disease requiring dialysis, and nontraumatic amputations in the U.S., and increases the risk for cardiovascular disease and stroke by 2-to-4-fold, compared to those without diabetes (1). It is the seventh leading cause of death (1), and, in 2007, cost $174 billion in both direct and indirect healthcare expenditures (2). Additionally, the prevalence of diabetes has been on the rise in the adolescent population (13), indicating that the epidemic is likely to continue into the next generation.

Prediabetes, the stage preceding the development of diabetes, increases the risk for the development of diabetes, such that 25-39% of patients with IFG or IGT go on to develop diabetes over a period of 5-10 years (14; 15). Moreover, prediabetes alone has been associated with an increased risk for the development of cardiovascular disease (16; 17) and microvascular complications typically seen with diabetes (18). Given these risks, prospective studies have been conducted to identify preventive treatment. In addition to lifestyle modification, pharmacologic treatment with acarbose (5), rosiglitazone (6), orlistat (19), or metformin (4) has shown
Metformin indicated in many prediabetic patients

efficacy in preventing or delaying the onset of diabetes in individuals with prediabetes. The relative risk reduction for diabetes in the prediabetic population was 25% over 3.3 years in patients treated with acarbose (5), 52-60% over 2-4 years with orlistat (19), 60% over 3 years with rosiglitazone (6), and 26-31% over 2.5-2.8 years with metformin (4). However, since many individuals with prediabetes are generally healthy, the benefit of preventive treatment must outweigh any associated side effects or additional risks, particularly since none of these medications have FDA approval for the indication of diabetes prevention. Gastrointestinal side effects are commonly associated with acarbose (5) and orlistat (19), leading to poor patient compliance, while an increased risk of bone loss (20), worsening or new-onset edema (21), and heart failure (22) are associated with rosiglitazone. Therefore, metformin, which has been used for many years and is both generally well-tolerated and relatively safe, has become the leading candidate for preventive treatment.

In addition to the recommendations of the ADA, the American College of Endocrinology (ACE) has recently issued their consensus statement on the management of prediabetes (23). Similar to the ADA, the ACE statement recognizes the need for preventive treatment, beginning with lifestyle modification, but also emphasizes the importance of treating relevant comorbid conditions, such as hypertension, hypercholesterolemia, and obesity, and provides a looser set of criteria regarding the initiation of pharmacologic treatment. Both acarbose and metformin are their recommended treatments for individuals who are at high risk of developing diabetes, which includes, but is not limited to, those with IFG, IGT, and/or the metabolic syndrome, worsening glycemia, cardiovascular disease, nonalcoholic fatty liver disease, history of gestational diabetes, or polycystic ovarian syndrome. Taking into account the target populations as defined by the ADA and the ACE, over 8% of Americans could benefit from pharmacologic treatment to prevent or delay development of diabetes.

Use of pharmacologic agents for the many Americans who may benefit from preventive treatment would incur substantial costs – at current generic rates for metformin, possibly $4/month x 12 months x 24 million Americans = $1.15 billion per year. However, several studies suggest that diabetes prevention or delay with metformin is likely to be cost effective and/or cost saving (24); further evaluation using a variety of cost analysis methods may be required to reach a definitive conclusion regarding the cost of preventive treatment.

To our knowledge, our findings are the first evaluation of the proportion of relatively healthy individuals who might benefit from metformin treatment for the prevention or delay of development of diabetes. However, our study has limitations. Since all SIGT subjects were recruited on a volunteer basis, there may have been a selection bias toward higher family history of diabetes and/or other risk factors for diabetes. Therefore, the SIGT population may represent a group of individuals at higher risk. However, since many SIGT subjects were recruited from university and healthcare settings, they may also follow healthier lifestyles, which could offset such a bias. Moreover, the proportion with diabetes or prediabetes in SIGT was no higher than that in NHANES III and was comparable to that in the more recent NHANES 2005-2006, both of which represent randomized, stratified samples of the American population.

The morbidity, mortality, and cost of the epidemic of diabetes have prompted a call for primary prevention of diabetes in high-risk individuals by the use of metformin in addition to lifestyle changes. To the extent that our findings are representative of the U.S.
population, close to 1 in 12 American adults may meet recommended guidelines for consideration of metformin treatment for diabetes prevention or delay. Notably, eligibility for metformin use appeared to be almost completely determined by impaired glucose metabolism alone, since 99% of the SIGT population and 96% of the NHANES populations with both IFG and IGT had at least one risk factor. Therefore, once the presence of both IFG and IGT has been established, the presence of additional risk factors could almost be assumed, and initiation of metformin should be considered. Moreover, since nearly one-third of all subjects with IFG met criteria for metformin treatment, providers should perform OGTTs in all patients with IFG to test for the presence of IGT (or unrecognized diabetes) and thereby determine whether they merit consideration of metformin treatment.

ACKNOWLEDGEMENTS

We thank the other members of the SIGT research group – Jack Kaufman, Aisha Bobcombe, Rincy Varughese, Eileen Osinski, Jade Irving, Amy Barrera, Lennisha Pinckney, Jane Caudle, and Circe Tsui. We also appreciate the support of the Emory GCRC and its staff.

This work was supported in part by DK070715 and RR017643 (M.K.R.), HS07922 and DK066204 (L.S.P., W.S.W., P.K., and V.V.), VA HSR&D SHP 08-144 and IIR 07-138 (L.S.P.), K24HL077506, K24HL077506, R01HL68630 and R01AG026255 (V.V.), and RR00039.

Portions of this work were presented as an oral presentation on June 9, 2008 at the 68th Scientific Sessions of the American Diabetes Association in San Francisco, CA.

The authors have no conflicting interests to declare.
REFERENCES
Metformin indicated in many prediabetic patients

Metformin indicated in many prediabetic patients

<table>
<thead>
<tr>
<th></th>
<th>SIGT (n=1581)</th>
<th>NHANES III (weighted, n=2014)</th>
<th>NHANES 2005-2006 (weighted, n=1111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (SE*)</td>
<td>48 (0.3)</td>
<td>55 (0.5)</td>
<td>46 (1.0)</td>
</tr>
<tr>
<td>Male sex (SE)</td>
<td>42% (0.01)</td>
<td>47% (1.1)</td>
<td>49% (1.7)</td>
</tr>
<tr>
<td>Black (SE)</td>
<td>58% (0.01)</td>
<td>10% (0.8)</td>
<td>13% (2.1)</td>
</tr>
<tr>
<td>BMI, kg/m² (SE)</td>
<td>30 (0.2)</td>
<td>27 (0.2)</td>
<td>28 (0.2)</td>
</tr>
<tr>
<td>A1c, % (SE)</td>
<td>5.4 (0.01)</td>
<td>5.4 (0.02)</td>
<td>5.3 (0.02)</td>
</tr>
<tr>
<td>Glucose tolerance categories† (SE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGT</td>
<td>62.1% (0.01)</td>
<td>54.3% (1.5)</td>
<td>59.1% (3.2)</td>
</tr>
<tr>
<td>IFG isolated</td>
<td>18.0% (0.01)</td>
<td>22.3% (1.4)</td>
<td>21.8% (1.9)</td>
</tr>
<tr>
<td>IGT isolated</td>
<td>7.2% (0.007)</td>
<td>6.4% (0.7)</td>
<td>5.0% (0.9)</td>
</tr>
<tr>
<td>IFG + IGT</td>
<td>8.2% (0.007)</td>
<td>9.4% (0.9)</td>
<td>9.0% (1.3)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4.6% (0.005)</td>
<td>7.6% (0.6)</td>
<td>5.2% (0.7)</td>
</tr>
</tbody>
</table>

* SE = standard error
† Glucose tolerance categories: NGT = normal fasting glucose and normal glucose tolerance, IFG isolated = impaired fasting glucose with normal glucose tolerance, IGT isolated = impaired glucose tolerance with normal fasting glucose, IFG + IGT = both impaired fasting glucose and impaired glucose tolerance.
Table 2: Prevalence of risk factors for diabetes in study subjects

<table>
<thead>
<tr>
<th>Glucose tolerance*</th>
<th>SIGT (n=1581)</th>
<th>NHANES III (weighted, n=2014)</th>
<th>NHANES 2005-2006 (weighted, n=1111)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Subjects (%)</td>
<td>IFG (± IGT) (%)</td>
<td>IGT (± IFG) (%)</td>
</tr>
<tr>
<td>Age < 60 years</td>
<td>84</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>BMI ≥ 35 kg/m²</td>
<td>22</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>Family history of diabetes</td>
<td>46</td>
<td>49</td>
<td>54</td>
</tr>
<tr>
<td>Triglycerides ≥ 150 mg/dl</td>
<td>13</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Reduced HDL†</td>
<td>47</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>Hypertension‡</td>
<td>49</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>A1c < 6.0%</td>
<td>7</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>≥ 1 risk factor</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Metformin indicated§</td>
<td>8.1</td>
<td>31.0</td>
<td>52.7</td>
</tr>
</tbody>
</table>

* Glucose tolerance categories: IFG (± IGT) = impaired fasting glucose with or without impaired glucose tolerance (IGT), IGT (± IFG) = impaired glucose tolerance with or without impaired fasting glucose, IFG + IGT = both impaired fasting glucose and impaired glucose tolerance.
† Reduced HDL defined as ≤40 mg/dl in men and ≤50 in women
‡ Hypertension defined by any of the following: history of hypertension, SBP ≥130 mm Hg, or DBP ≥85 mm Hg
§ Metformin indicated per the ADA consensus statement (8) criteria of the presence of both IFG and IGT and one of the following diabetes risk factors: age <60 years, BMI ≥35 kg/m², family history of diabetes, elevated triglycerides, reduced HDL, and A1c >6.0%.

Risk factors for diabetes which were not specifically defined by the ADA were categorized according to the AHA/NHLBI diagnostic criteria for metabolic syndrome (12): presence of hypertension by history, systolic blood pressure >130 mm Hg, or diastolic blood pressure >85 mm Hg; triglyceride level ≥150 mg/dl; and HDL-cholesterol <40 mg/dl in men and <50 mg/dl in women.
Legends

Figure 1: Prevalence of metformin indication*, stratified by glucose tolerance category†

* Metformin indicated per the ADA consensus statement criteria of the presence of both IFG and IGT and one of the following diabetes risk factors: age <60 years, BMI ≥35 kg/m², family history of diabetes, elevated triglycerides, reduced HDL, and A1c >6.0% (8). Risk factors for diabetes which were not specifically defined by the ADA were categorized according to the AHA/NHLBI diagnostic criteria for metabolic syndrome (12): presence of hypertension by history, systolic blood pressure >130 mm Hg, or diastolic blood pressure >85 mm Hg; triglyceride level ≥150 mg/dl; and HDL-cholesterol <40 mg/dl in men and <50 mg/dl in women.

† Glucose tolerance categories: IFG 100-109 = fasting plasma glucose (FPG) levels 100-109 mg/dl and 2-hour postchallenge plasma glucose (2hrPG) <140 mg/dl, IFG 110-125 = FPG 110-125 mg/dl and 2hrPG <140 mg/dl, all IFG = isolated impaired fasting glucose (FPG 100-125 mg/dl and 2hrPG <140 mg/dl), IGT = isolated impaired glucose tolerance, IFG 100-125 + IGT = all IFG and IGT.